Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing.

نویسندگان

  • Yongming Wang
  • Ping Liang
  • Feng Lan
  • Haodi Wu
  • Leszek Lisowski
  • Mingxia Gu
  • Shijun Hu
  • Mark A Kay
  • Fyodor D Urnov
  • Rami Shinnawi
  • Joseph D Gold
  • Lior Gepstein
  • Joseph C Wu
چکیده

BACKGROUND Human induced pluripotent stem cells (iPSCs) play an important role in disease modeling and drug testing. However, the current methods are time-consuming and lack an isogenic control. OBJECTIVES This study sought to establish an efficient technology to generate human PSC-based disease models with isogenic control. METHODS The ion channel genes KCNQ1 and KCNH2 with dominant negative mutations causing long QT syndrome types 1 and 2, respectively, were stably integrated into a safe harbor AAVS1 locus using zinc finger nuclease technology. RESULTS Patch-clamp recording revealed that the edited iPSC-derived cardiomyocytes (iPSC-CMs) displayed characteristic long QT syndrome phenotype and significant prolongation of the action potential duration compared with the unedited control cells. Finally, addition of nifedipine (L-type calcium channel blocker) or pinacidil (KATP-channel opener) shortened the action potential duration of iPSC-CMs, confirming the validity of isogenic iPSC lines for drug testing in the future. CONCLUSIONS Our study demonstrates that iPSC-CM-based disease models can be rapidly generated by overexpression of dominant negative gene mutants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

A new hERG allosteric modulator rescues genetic and drug‐induced long‐QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells

Long-QT syndrome (LQTS) is an arrhythmogenic disorder characterised by prolongation of the QT interval in the electrocardiogram, which can lead to sudden cardiac death. Pharmacological treatments are far from optimal for congenital forms of LQTS, while the acquired form, often triggered by drugs that (sometimes inadvertently) target the cardiac hERG channel, is still a challenge in drug develop...

متن کامل

FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling

Genome editing and human induced pluripotent stem cells hold great promise for the development of isogenic disease models and the correction of disease-associated mutations for isogenic tissue therapy. CRISPR-Cas9 has emerged as a versatile and simple tool for engineering human cells for such purposes. However, the current protocols to derive genome-edited lines require the screening of a great...

متن کامل

Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome

Patient-specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long-QT syndromes (LQTS). To study the LQT2-associated c.A2987T (N996I) KCNH2 mutation under genetically define...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American College of Cardiology

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 2014